Patchy nanoparticles self-assembled from linear triblock copolymers under spherical confinement: a simulated annealing study.

نویسندگان

  • Bin Yu
  • Jianhua Deng
  • Baohui Li
  • An-Chang Shi
چکیده

The self-assembly of linear ABC triblock copolymers confined in spherical nanopores is studied using a simulated annealing technique. Morphological phase diagrams as a function of the pore diameter, the selectivity of the pore-wall to the terminal blocks, and the copolymer composition are constructed. A variety of patchy nanoparticles and multiple morphological transitions are identified. Janus nanoparticles, which can be regarded as particles with one patch, are observed inside small nanopores. With increasing the pore diameter, the number of patches on a nanoparticle surface increases from one to two, four, five, six, and seven. The size of each patch increases periodically. The number of patches also increases with increasing the wall selectivity. The distribution of the patches on the surface of a given particle is highly symmetric. The interior structures of the patchy nanoparticles and the morphological transition are investigated by calculating the bridging fraction, the mean square end-to-end distance and the average contact number between different components. A series of entropy-driven morphological transitions is predicted. Furthermore, it is found that the overall patchy morphology is largely controlled by the volume fraction of the middle B-block, while the internal structure is largely controlled by the volume fraction ratio of the two terminal blocks. Our study demonstrates that the size of nanopores, the pore-wall selectivity, and the copolymer composition could be utilized as effective means to tune the structure and properties of the anisotropic nanoparticles.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Highly Symmetric Patchy Multicompartment Nanoparticles from the Self-Assembly of ABC Linear Terpolymers in <italic>C</italic>-Selective Solvents

Multicompartment micelles, especially those with highly symmetric surfaces such as patchy-like, patchy, and Janus micelles, have tremendous potential as building blocks of hierarchical multifunctional nanomaterials. One of the most versatile and powerful methods to obtain patchy multicompartment micelles is by the solution-state self-assembly of linear triblock copolymers. In this article, we a...

متن کامل

Self-assembly of well-defined ferrocene triblock copolymers and their template synthesis of ordered iron oxide nanoparticles.

Well-defined ferrocene-containing triblock copolymers were synthesized by atom transfer radical polymerization and self-assembled into highly ordered hexagonal arrays of cylinders via solvent annealing. The thin films were further used as a template and converted into highly ordered iron oxide nanoparticles (α-Fe2O3) by UV/ozonolysis and thermal pyrolysis.

متن کامل

Photoresponsive Polymeric Reversible Nanoparticles via Self-Assembly of Reactive ABA Triblock Copolymers and Their Transformation to Permanent Nanostructures

Azobenzene-functionalized ABA triblock copolymers with controlled molecular weights are prepared first via a sequential ring-opening metathesis polymerization and acyclic diene metathesis polymerization in one-pot, which are readily converted, by a facile esterification, to the modified ABA triblock copolymers. Then, these reactive triblock copolymers can spontaneously self-assemble in a select...

متن کامل

Correction: Self-assembly of Janus nanoparticles with a hydrophobic hemisphere in nanotubes.

We performed molecular simulations to investigate the morphologies and phase diagrams of self-assembled diblock Janus nanoparticles (JNPs) confined in nanotubes. A JNP is a unique anisotropic nanoparticle, which typically has more than two distinct surfaces, each with different properties. We derived qualitative phase diagrams of axial pressure versus the ratio of the diameter of the nanopartic...

متن کامل

Use of complementary nucleobase - containing synthetic polymers to prepare complex self - assembled morphologies in water †

Amphiphilic nucleobase-containing block copolymers with poly(oligo(ethylene glycol) methyl ether methacrylate) as the hydrophilic block and nucleobase-containing blocks as the hydrophobic segments were successfully synthesized using RAFT polymerization and then self-assembled via solvent switch in aqueous solutions. Effects of the common solvent on the resultant morphologies of the adenine (A) ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Soft matter

دوره 10 35  شماره 

صفحات  -

تاریخ انتشار 2014